Solution of the Zero Rest-Mass Equations for Free Fields in the Einstein Static Universe

FREDERICK S. KLOTZ

Department of Applied Mathematics, 39 Trinity College, Dublin 2, Ireland

Received: 20 September 1974

Abstract

Solutions to the source-free spin s zero rest-mass equations in the Einstein static universe are obtained by means of the Newman-Penrose spin coefficient formalism.

1. Introduction

One of the interesting features of the source-free spin s zero rest-mass equations (Penrose, 1965)

$$\nabla^{AX'} \Phi_{AB\dots K} = 0 \qquad (s \neq 0) \tag{1.1a}$$

$$\Box \Phi \equiv (\nabla^{AX'} \nabla_{AX'} + \frac{1}{6}R) \Phi = 0 \qquad (s=0)$$
(1.1b)

is their invariance under conformal rescalings of the space-time metric

$$ds^2 \to d\hat{s}^2 = \Omega^{-2} ds^2 \tag{1.2}$$

if one assigns to the Φ_{AB} ... K the transformation law

$$\Phi_{AB\dots K} \to \tilde{\Phi}_{AB\dots K} = \Omega^{s+1} \Phi_{AB\dots K} \tag{1.3}$$

The spinor fields $\Phi_{AB...K}$ of (1.1) and (1.3) are totally symmetric in the 2s spinor indices A, B, \ldots, K . From the point of view of (1.1), all background space-times which differ only by a scale transformation (1.2) are equivalent; solutions in any fixed space-time induce corresponding solutions in all other conformally related space-times via (1.3). For most problems in conformally flat background space-times, equations (1.1) are most easily solved in Minkowski space. But when the background space-time is not actually flat, or when given boundary conditions can be simplified by a scale transformation, it may be more convenient to work in other conformally flat space-times.

^{© 1975} Plenum Publishing Corporation. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission of the publisher.

FREDERICK S. KLOTZ

In this paper equations (1.1) are examined for the Einstein static universe &, with the (conformally flat) metric

$$ds_{\mathcal{E}}^{2} = d\chi^{2} - d\psi^{2} - \sin^{2}\psi(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

$$ds_{\mathcal{E}}^{2} = d\chi^{2} - \frac{1}{4}(d\alpha^{2} + d\beta^{2} + d\gamma^{2} + 2\cos\beta d\alpha d\gamma)$$
(1.4)

where

$$\cos \psi - i \sin \psi \cos \theta = \cos \frac{\beta}{2} \exp \left(-i \left(\frac{\alpha + \gamma}{2}\right)\right) \quad \phi = \frac{\alpha - \gamma}{2}$$

When equations (1.1) are formulated in terms of the infinitesimal operators for the symmetry group of &, they break up into coupled pairs, from which decoupled second-order equations may be derived. The second-order equations are separable in the χ , α , β , γ coordinate system, and all separated solutions are easily constructed. By making repeated use of the commutation relations of the infinitesimal operators, it is possible to satisfy the coupled first-order equations as well. This procedure will be carried out in detail below.

2. The Zero Rest-Mass Equations in &

The metric (1.4) admits seven independent Killing vector fields,

$$\begin{aligned} \tau^{\mu} &\equiv \frac{1}{2} (1, 0, 0, 0) \\ \xi_{1}^{\mu} &\equiv (0, \cot \beta \sin \alpha, -\cos \alpha, -\csc \beta \sin \alpha) \\ \xi_{2}^{\mu} &\equiv (0, -\cot \beta \cos \alpha, -\sin \alpha, \csc \beta \cos \alpha) \\ \xi_{3}^{\mu} &\equiv (0, -1, 0, 0) \\ \eta_{1}^{\mu} &\equiv (0, \csc \beta \sin \gamma, \ \cos \gamma, -\cot \beta \sin \gamma) \\ \eta_{2}^{\mu} &\equiv (0, -\csc \beta \cos \gamma, \sin \gamma, \cot \beta \cos \gamma) \\ \eta_{3}^{\mu} &\equiv (0, 0, 0, -1). \end{aligned}$$

One of these, τ^{μ} , is time-like and orthogonal to the χ = constant hypersurfaces, while the remaining six, ξ^{μ}_{a} and η^{μ}_{a} (a = 1, 2, 3), lie entirely within the χ = constant hypersurfaces. The associated differential operators,

$$T \equiv i\tau^{\mu} \frac{\partial}{\partial x^{\mu}}$$
$$L_{a} \equiv i\xi^{\mu}_{a} \frac{\partial}{\partial x^{\mu}}$$
$$M_{a} \equiv i\eta^{\mu}_{a} \frac{\partial}{\partial x^{\mu}}$$

satisfy

$$\begin{bmatrix} L_a, L_b \end{bmatrix} = i\epsilon_{abc}L_c$$

$$\begin{bmatrix} M_a, M_b \end{bmatrix} = i\epsilon_{abc}M_c$$

$$\begin{bmatrix} L_a, M_b \end{bmatrix} = 0$$
(2.1a)

and

$$[L_a, T] = [M_a, T] = 0$$
(2.1b)

where ϵ_{abc} is totally antisymmetric with $\epsilon_{123} = 1$. The commutation relations (2.1a) characterise the Lie algebra of O(4), the symmetry group of the space-like 3-spheres $\chi = \text{constant}$. With

$$L_{\pm} \equiv L_1 \pm iL_2$$
$$M_{\pm} \equiv M_1 \pm iM_2$$

one also has

$$[L_3, L_{\pm}] = \pm L_{\pm} \qquad [M_3, M_{\pm}] = \pm M_{\pm}$$

$$[L_+, L_-] = 2L_3 \qquad [M_+, M_-] = 2M_3$$

$$(2.2)$$

In order to make full use of the symmetries of & in dealing with (1.1), it will be convenient to introduce a null tetrad $(l^{\mu}, n^{\mu}, m^{\mu}, \overline{m}^{\mu})$ and an associated spinor dyad (o^{A}, i^{A}) given by

$$l^{\mu} \equiv \sqrt{2} (\tau^{\mu} + \xi_{3}^{\mu}) \longleftrightarrow o^{A} \overline{o}^{A'}$$
$$n^{\mu} \equiv \sqrt{2} (\tau^{\mu} - \xi_{3}^{\mu}) \longleftrightarrow i^{A} \overline{i}^{A'}$$
$$m^{\mu} \equiv \sqrt{2} (\xi_{1}^{\mu} + i\xi_{2}^{\mu}) \longleftrightarrow o^{A} \overline{i}^{A'}$$

The null Killing vectors l^{μ} , n^{μ} , m^{μ} , and \overline{m}^{μ} , satisfy the standard orthogonality relations:

 $l^{\mu}n_{\mu} = -m^{\mu}\overline{m}_{\mu} = 1$

and all other scalar products vanish.

With the above conventions, equations (1.1a) may be written

$$\begin{bmatrix} T + L_3 + \frac{s+1}{2} \end{bmatrix} \Phi_{(N+1)} = L_{-} \Phi_{(N)}$$

$$\begin{bmatrix} T - L_3 + \frac{s+1}{2} \end{bmatrix} \Phi_{(N)} = L_{+} \Phi_{(N+1)}$$
(0 < N < 2s - 1) (2.3)

The $\Phi_{(N)}$ in (2.3) are the dyad components of the $\Phi_{AB...K}$,

$$\Phi_{(N)} \equiv \Phi_{AB\dots RS} O^A O^B \dots i^R i^S$$

where N is the number of times i^A appears on the right-hand side above. From (2.3) one immediately obtains the decoupled second-order equations

$$\left[T^{2} + sT - L^{2} + \frac{s^{2} - 1}{4}\right] \Phi_{(N)} = 0 \qquad (0 \le N \le 2s)$$
(2.4)

where

$$L^{2} \equiv L_{1}^{2} + L_{2}^{2} + L_{3}^{2} = L_{+}L_{-} + L_{3}^{2} - L_{3}$$

If one identifies Φ with $\Phi_{(0)}$, equation (1.1b) takes the form of (2.4) with s = 0.

3. Solutions

Solutions to (2.4) of the form

$$\Phi_{(N)} = S(\chi)A(\alpha)B(\beta)C(\gamma) \tag{3.1}$$

may readily be obtained. One finds, on substituting (3.1),

$$S(\chi) = e^{-2i\tau \pm \chi}$$

$$A(\alpha) = e^{im\alpha}$$

$$C(\gamma) = e^{im'\gamma}$$

$$B(\beta) = \left(\sin\frac{\beta}{2}\right)^{|m-m'|} \left(\cos\frac{\beta}{2}\right)^{m+m'} W_l\left(\sin^2\frac{\beta}{2}\right)$$

where l, m, m', and

$$\tau_{\pm} = -\frac{s}{2} \pm (l + \frac{1}{2})$$

are the separation constants and W_l must satisfy the hypergeometric equation

$$\omega(1-\omega)\frac{d^2W_l}{d\omega^2} + [1+|m-m'| - 2\omega(M+1)]\frac{dW_l}{d\omega} + [l(l+1) - M(M+1)]W_l = 0$$
(3.2)

with

$$\omega \equiv \sin^2 \frac{\beta}{2}$$
$$M \equiv \frac{|m - m'| + (m + m')}{2} = \begin{cases} m & m \ge m' \\ m' & m' \ge m \end{cases}$$

Solutions with physically acceptable behaviour in the angular coordinates α , β , and γ occur only for values of *m* and *m'* satisfying

$$m - m' = 0, \pm 1, \pm 2, \dots$$

 $m + m' = 0, \pm 1, \pm 2, \dots$

In this case the general solution to (3.2) is (Morse & Feshbach, 1953)

$$W_{l}(\omega) = AF(M - l, M + l + 1; 1 + |m - m'|; \omega) + BG(M - l, M + l + 1; 1 + |m - m'|; \omega)$$

where $F(a, b; c; \omega)$ is the hypergeometric function and

$$G(a,b;c;\omega) \equiv F(a,b;c;\omega) \int [F(a,b;c;\omega')]^{-2} \omega'^{-c} (1-\omega')^{c-a-b-1} d\omega'$$

Thus the basic separated solutions, from which more general solutions to (2.4) may be constructed, are

$$\Phi_{\tau_{\pm}lmm'n} \equiv e^{-2i\tau_{\pm}\chi} e^{im\alpha} e^{im'\gamma} \left(\sin\frac{\beta}{2} \right)^{lm-m'l} \left(\cos\frac{\beta}{2} \right)^{m+m'} \\ \times \begin{cases} F\left(M-l, M+l+1; 1+|m-m'|; \sin^2\frac{\beta}{2}\right) & (n=1) \\ G\left(M-l, M+l+1; 1+|m-m'|; \sin^2\frac{\beta}{2}\right) & (n=2) \end{cases}$$
(3.3)

The $\Phi_{\tau_{\pm}lmm'n}$ of (3.3) are eigenfunctions of the operators T, L^2, L_3 , and M_3 , corresponding to the eigenvalues $\tau_{\pm}, l(l+1), m$, and m' respectively. L_{\pm} and M_{\pm} transform the $\Phi_{\phi_{\pm}lmm'n}$ among themselves. Consequently the $\Phi_{\tau_{\pm}lmm'n}$ form a basis for representations of the group of symmetry transformations of & (cf. Kyriakopoulos, 1974).

Unless s = 0, the coupled equations (2.3) must still be satisfied. From the commutation relations (2.1)-(2.2), it follows that $L_{-}^{k} \Phi_{\tau \pm lmm'n}$ is an eigenfunction of the operators T, L^{2}, L_{3} , and M_{3} corresponding to the eigenvalues $\tau_{\pm}, l(l+1), m-k$, and m' respectively, that is, a linear combination of $\Phi_{\tau \pm lm - km'1}$ and $\Phi_{\tau + lm - km'2}$. Consequently if

$$\Phi_{(0)} = \Phi_{\tau_+ lmm'n} \tag{3.4a}$$

one can satisfy (2.3) by taking

$$\Phi_{(N)} = \frac{L_{-}^{N} \Phi_{\tau,lmm'n}}{(l+m)(l+m-1)\dots(l+m+1-N)}, \qquad N = 1, 2, \dots 2s$$
(3.5a)

while if

$$\Phi_{(0)} = \Phi_{\tau_{-}lmm'n} \tag{3.4b}$$

(2.3) has the solution

$$\Phi_{(N)} = \frac{(-)^{N} L_{-}^{N} \Phi_{\tau-lmm'n}}{(l-m+1)(l-m+2)\dots(l-m+N)}, \qquad N = 1, 2, \dots 2s$$
(3.5b)

When $\Phi_{(0)}$ is a linear combination of $\Phi_{\tau_{\pm}lmm'n}$, the $\Phi_{(N)}$ are the corresponding linear combinations of the right-hand sides of (3.5a) and (3.5b).

To the particular solutions (3.5) for $\Phi_{(N)}$, N = 1, 2, ..., 2s one may freely add any solution $\Psi_{(N)}$ of the equations

$$\begin{bmatrix} T + L_3 + \frac{s+1}{2} \end{bmatrix} \Psi_{(N)} = 0$$

$$L_+ \Psi_{(N)} = 0$$
(3.6)

at any N level. For equations (3.6) guarantee that, if $\Psi_{(N)}$ is added to any $\Phi_{(N)}$, no change in $\Phi_{(N-1)}, \Phi_{(N-2)}, \ldots, \Phi_{(0)}$ is required to maintain (2.3). By (3.6), $\Psi_{(N)}$ must be a linear combination of $\Phi_{\tau_{\pm}l_{\pm}mm'1}$ and $\Phi_{\tau_{\pm}l_{\pm}mm'2}$, with

$$l_+(m) \equiv -m - m - l_-(m) \equiv m$$

1

One finds, in fact,

$$\Psi_{(N)} = \sum_{mm'} A_{(N)mm'} \Psi_{mm'}$$

where

$$\Psi_{mm'} \equiv e^{i(s+1+2m)} \chi e^{im\alpha} e^{im'\gamma} \left(\sin\frac{\beta}{2} \right)^{m-m'} \left(\cos\frac{\beta}{2} \right)^{m+m}$$

The coefficients $A_{(N)mm'}$ are arbitrary for each N level. Terms proprotional to $\Psi_{mm'}$ cannot occur in the particular solutions (3.5), for when $l = l_{\pm}(m-1)$ the denominators on the right vanish, while the numerators containing the $\Psi_{mm'}$ do not. But once such terms are introduced at any N level, they generate terms at higher N levels like the other $\Phi_{\tau+lmm'n}$. If, for instance

$$\Phi_{(N)} = L^k_{-} \Psi_{(N)}$$

one has from (3.5)

$$\Phi_{(N+1)} = -\frac{L_{-}^{k+1}\Psi_{(N)}}{k+1}.$$

When

$$\Phi_{(N)} = \Phi_{\tau \pm lmm'n}$$

the general expression for $\Phi_{(N+1)}$ is

$$\Phi_{(N+1)} = \pm \frac{L_{-} \Phi_{\tau \pm lmm'n}}{l - l_{\pm}(m-1)} + \Psi_{(N+1)}$$

One may summarise the above results as follows. With

$$\Phi_{(0)} = \Phi_{\tau_{\pm} lmm'n} \tag{3.7a}$$

the general solution for $\Phi_{(N)}$ (N = 1, 2, ..., 2s) is

$$\Phi_{(N)} = \frac{(\pm)^{N} L_{-}^{N} \Phi_{\tau_{\pm} lmm'n}}{\prod_{k=0}^{N} [l - l_{\pm}(m - k - 1)]} + \sum_{k=1}^{N} \frac{(-)^{N-k}}{(N-k)!} L_{-}^{N-k} \Psi_{(k)} \quad (3.7b)$$

From the solution (3.7) with $\Phi_{(0)}$ in separated form, all solutions to equations (1.1) in & may be obtained.

References

Penrose, R. (1965). Proceedings of the Royal Society, 284A, 159.
Morse, P. M. and Feshbach, H. (1953). Methods of Theoretical Physics, Part 1, p. 541.
McGraw-Hill Book Co., Inc., New York.
Kyriakopoulos, E. (1974). Journal of Mathematical Physics, 15, 172.