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Abs t rac t  

Solutions to the  source-free spin s zero rest-mass equat ions  in the  Einstein stat ic  universe 
are obtained b y  means  o f  the  Newman-Penrose  spin coefficient formalism. 

1. In t roduc t ion  

One of  the interesting features of the source-free spin s zero rest-mass 
equations (Penrose, 1965) 

v A X ' e b A B . . . K  =0 ( s~O)  (1.1a) 

[S] qS----(vAX'VAX' + ~ R )  d/P=O ( s = O )  ( 1 . 1 b )  

is their invariance under conformal rescalings of  the space-time metric 

ds 2 "+ d~ 2 = ~-~-2ds 2 (1.2) 

if one assigns to the CAB.. .  K the transformation law 

CbAB . . .K  ~ ~;AB. . .K  = ~2s+l CbAB. . . K  (1.3) 

The spinor fields CbAB.. "K of (1.1) and (1.3) are totally symmetric in the 
2s spinor indices A, B . . . .  , K. From the point of view of (1.1), all background 
space-times which differ only by a scale transformation (1.2) are equivalent; 
solutions in any fixed space-time induce corresponding solutions in all other 
conformally related space-times via (1.3). For most problems in conformally 
flat background space-times, equations (1.1) are most easily solved in 
Minkowski space. But when the background space-time is not actually flat, 
or when given boundary conditions can be simplified by a scale transforma- 
tion, it may be more convenient to work in other conformaUy flat space- 
times. 
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In this paper equations (1.1) are examined for the Einstein static universe 
g ,  with the (conformally flat) metric 

d s  2 = d x  2 _ d ~  2 - sin 2 t~(dO 2 + sin2Odq~ 2) 
(1.4) 

ds2a = d x  2 - ¼ ( d a  2 + d/32 + d3 '2 + 2 cos fidadT) 

where 

c o s ~ - i s i n ~ c o s 0 = c o s  exp i ~ b = - - ~  

When equations (1.1) are formulated in terms of  the infinitesimal operators 
for the symmetry  group of  g ,  they break up into coupled pairs, f rom which 
decoupled second-order equations may be derived. The second-order equa- 
tions are separable in the ×, a ,  3, 3' coordinate system, and all separated 
solutions are easily constructed. By making repeated use of  the commutat ion  
relations o f  the infinitesimal operators, it is possible to satisfy the coupled 
first-order equations as well. This procedure will be carried out in detail below. 

2.  T h e  Z e r o  R e s t - M a s s  E q u a t i o n s  in 

The metric (1.4) admits seven independent Killing vector fields, 

---½ (l ,  0, 0, o) 

~ - (0, cot/3 sin a,  - cos a,  - csc 3 sin a)  

~ = (0, - cot/3 cos a, - sin ~, csc 3 cos a) 

---- ( 0 ,  - 1 , o , o )  

r/~ = (0, csc/3 sin % cos % - cot/3 sin 3') 

r/~ = (0, -- csc/3 cos % sin 7, cot 3 cos 7) 

(0, o, 0, - 0 .  

One of  these, r u, is time-like and orthogonal to the X = constant hyper- 
surfaces, while the remaining six, Ga g and r/a u (a = 1 ,2 ,  3), lie entirely within 
the × = constant hypersurfaces. The associated differential operators, 

T = ir  ~ ~ x  ~ 

. #  
L a ~ l~a ~xt t  

0 
M a  = i~ua ~x-- ~ 
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satisfy 

and 

[La, L a  ] = ieabcLc 

[Ma, Mb ] = ieabeM c 

[La ,Mb]  = 0  

(2.1a) 

[Za,  T] = [ M  a, T] = 0 (2 .1b )  

where Cab c is totally antisymmetric with el2a = 1. The commutation relations 
(2.1a) characterise the Lie algebra of 0(4), the symmetry group of the space- 
like 3-spheres X = constant. With 

L± - L  1 + iL 2 

tt4+_ ==- M 1 +- i m  2 

one also has 
[L3,L+ ] =+L± [M3,M+ ] =-+M+ 

(2.2) 
[r+,t._] =2L3 [M+,M ] =2M3 

In order to make full use of the symmetries of ~ in dealing with (1.1), it 
will be convenient to introduce a null tetrad (lU, n u, m u, igt u) and an 
associated spinor dyad (o  A , i A ) given by 

t - , , / (2 )  (r" + + - +  o A a 

n u - X/(2) ( r  u - ~ )  +--> i a TA' 

m u =~/(2)(~ul + i ~ )  < >OA? 4' 

The null Killing vectors l u, n u, m u, and/flu, satisfy the standard orthogonality 
relations: 

lUn~ = - m U m u  = 1 

and all other scalar products vanish. 
With the above conventions, equations (1. l a) may be written 

[ T + L a  + ~  -~1 ¢~(N+I)=L~(N) 
( 0 ~ < N ~ < Z s - 1 )  (2.3) 

- dp(N ) = L+(b(N+I ) 

The ~(N) in (2.3) are the dyad components of the e~AB" ..  K ,  

C~(N) ~--- ¢~AB. . , R S  OAOB " • " i R  iS  

where N is the number of times i A appears on the right-hand side above. 
From (2.3) one immediately obtains the decoupted second-order equations 

T 2 + s T - L 2 +  4 q)(N)=0 (0~<N<~2s) (2.4) 
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where 

If one identifies qb with ~(o), equation (I. Ib) takes the form of (2.4) with 
s=O. 

3. Solutions 

Solutions to (2.4) of  the form 

o(N) = S(×)A(~)B(/3)C(7) (3.1) 

may readily be obtained. One finds, on substituting (3.1), 

S(X) = e - = i ~ - + x  

A(ct)= e ima 

C('r) = d m'~ 

B(/3)=(sin~) Im-m'l{~cOs ~-]/3~m+m'wl(sin2 ~) 

where l, m, m', and 

S 
T± = - 2 - +  ( t  + ½) 

are the separation constants and Wz must satisfy the hypergeometric equation 

dWl 

with 

d~Wl 
co(1 - co) ~ 2  + [1 + Im-- m'l - 2co(M+ 1)1 dco 

+ [/(l+ 1 ) -  M(M+ 1)] W l =0  
(3.2) 

w --- sin 2 ~ 
2 

Im-m ' l+(m+m' )  (m m>>-m' 
M = _ = 

2 m' m' >i m 

Solutions with physically acceptable behaviour in the angular coordinates 
a,/3, and 7 occur only for values of m and m' satisfying 

m - r e ' = 0 ,  + - 1 , + 2 , . . .  

m + m ' = 0 ,  +_ 1 , + 2 , . . .  

In this case the general solution to (3.2) is (Morse & Feshbach, 1953) 

Wt(co) =AF(M- l, M+ l+ I; 1 + [m - m'l; co) 

+BG(M- l,M+l+ 1; 1 + I r a -  m'l;co) 
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where F(a, b; c; co) is the hypergeometric function and 

G(a, b; c; w) = F(a, b; c; ¢o) f [F(a, b; c; w')l-Z w'-c(1 _ co')c-a-b-l  d¢ o' 

Thus the basic separated solutions, from which more general solutions to 
(2.4) may be constructed, are 

[ l~\ m- re '  
~ . c+_lmm,n~e-2 i r+-Xe im°~e im~s in2)  (COS ~) m+m 

x { ~ ( M - I , M + l + l ; l + l m - m ' l ; s i n 2 ~ )  ( n = l )  (3.3) 

( M - l , M + l + t ; l + l m - m ' l ; s i n 2 ~ )  ( n = 2 )  

The dgr+ - lmm'n of (3.3) are eigenfunctions of the operators T, L 2, L a, and 
343, corresponding to the eigenvalues r+, l(l + 1), m, and m' respectively. L+ 
and Me transform the (YP¢+lmm'n among themselves. Consequently the 
cbr+lmm' n form a basis for representations of the group of symmetry trans- 
formations of g (cf. Kyriakopoulos, 1974). 

Unless s = 0, the coupled equations (2.3) must still be satisfied. From the 
k commutation relations (2.1)-(2.2), it follows that L (Pr+tmm'n is an eigen- 

function of the operators T, L 2 , L 3, and M 3 correspondi-ng to the eigenvalues 
r+, l(l + 1), m - k, and m' respectively, that is, a linear combination of 
~r+-lm--km'l and clPr+lm_krn' 2 . Consequently if 

~(0) = ~r+lmm'n (3.4a) 

one can satisfy (2.3) by taking 

LN__ di2r +imm' n 

Cb(N) = (l + rn)(l + m -- 1 ) . . .  (l + m + 1 - N)' 
N=  1 , 2 , . . .  2s 

(3.5a) 
while if 

dP(O) = ~'c _ lmm'n (3.4b) 

(2.3) has the solution 

(--yY LN_Opr_tmrn'n 
4P(N) ( l - m + l ) ( / - m + 2 ) . . . ( l - m + N ) '  N = 1 , 2 , . . . 2 5  

O.5b) 
When (I)(o) is a linear combination of ~r+lram'n, the q)(N) are the corresponding 
linear combinations of the right-hand siffes of (3.5a) and (3.5b). 

To the particular solutions (3.5) for (I)(N), N = 1, 2 . . . .  ,25 one may freely 
add any solution qZ(N ) of the equations 

(3.6) 
L+~(N) = 0 
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at any N level. For equations (3.6) guarantee that, if kit(N ) is added to any 
aP(N), no change in ¢P(N-O, CP(N--2) . . . . .  ~(0) is required to maintain (2.3). 
By (3.6), ff'(N) must be a linear combination of ~r+_l+_rnrn'l and dPz+_l+_rnrn'2, 

with 

One finds, in fact, 

where 

l + ( m )  = - m --  1 

l_  ( m )  = m 

v!S(N ) = ~ A(N)mm'q'tmm' 
mm F 

kbmrn,=ei(s+l+2rn)xeirnc~eim'~t(sJn~)m-rn' [ ~COS ~-} 3~m+m' 

The coefficients A(N)mrn' are arbitrary for each N level. Terms proprotional 
to  t l2mm' cannot occur in the particular solutions (3.5), for when l = l+_(m - 1) 
the denominators on the right vanish, while the numerators containing the 
~rnrn' do not. But once such terms are introduced at any N level, they 
generate terms at higher N levels like the other ~r_+ lmrn 'n .  If, for instance 

':I'(N) = Lk- q~(N) 

one has from (3.5) 
L~+ t ~(N) 

cI)(N+l) -- k + 1 

When 

dP(N) = ~.r +_lrnrn'n 

the general expression for ¢P(N+I) is 

L _  ~r+_ l m m ' n  
¢b(N+D = + "l - l + ( m  - 1) ÷ ~(N+I) 

One may summarise the above results as follows. With 

ffP(O) = (Pr +_ lmm'n (3.7a) 

the general solution for ~P(N) (N = 1,2 . . . .  2s) is 

(+)NLNffPr+imm, n N ( _ ) N - k  N - k  (3.7b) 
= - - + ( N -  k)! L _  ~ ( k )  ~P(N) N--1 k = l  

1 ~  [ l - / + ( r n  - k - 1) ]  

k=O 

From the solution (3.7) with ~(o) in separated form, all solutions to equations 
(1.1) in g may be obtained. 
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